An efficient algorithm for compression-based compressed sensing
نویسندگان
چکیده
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals’ structures to recover them from few linear observations. Despite the steady progress in the field of compressed sensing, structures that are often used for signal recovery are still much simpler than those employed by state-of-the-art compression codes. The main goal of this paper is to bridge this gap through answering the following question: Can one employ a given compression code to build an efficient (polynomial time) compressed sensing recovery algorithm? In response to this question, the compression-based gradient descent (C-GD) algorithm is proposed. C-GD, which is a low-complexity iterative algorithm, is able to employ a generic compression code for compressed sensing and therefore elevates the scope of structures used in compressed sensing to those used by compression codes. The convergence performance of C-GD and its required number of measurements in terms of the rate-distortion performance of the compression code are theoretically analyzed. It is also shown that C-GD is robust to additive white Gaussian noise. Finally, the presented simulation results show that combining C-GD with commercial image compression codes such as JPEG2000 yields state-of-the-art performance in imaging applications.
منابع مشابه
Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey
Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...
متن کاملA Robust Compressed Sensing IC for Bio-Signals
Energy-efficient application-specific integrated circuits (ASICs) are necessary in severely energy-constrained sensors. Compressed sensing is a signal-processing algorithm for data compression which exploits the nature of the sparseness in typical bio-signal. However, compressed sensing algorithms are not stable in the presence of noise, so data is often reconstructed with errors. Most existing...
متن کاملEnergy Efficient Telemonitoring of Physiological Signals via Compressed Sensing: A Fast Algorithm and Power Consumption Evaluation
Wireless telemonitoring of physiological signals is an important topic in eHealth. In order to reduce on-chip energy consumption and extend sensor life, recorded signals are usually compressed before transmission. In this paper, we adopt compressed sensing (CS) as a low-power compression framework, and propose a fast block sparse Bayesian learning (BSBL) algorithm to reconstruct original signal...
متن کاملDEMD-based Image Compression Scheme in a Compressive Sensing Framework
Efficient representation of the background texture in video image frames, motivates compression strategies based on good perceptual reconstruction quality, instead of just bit-accurate reconstruction. This is especially true for video image frames in applications such as videos with structural patterns, and Bi-Directional Reflectance Distribution Function (BRDF) image frames of an object, where...
متن کاملEfficient Compressed Sensing using Lossless Expander Graphs with Fast Bilateral Quantum Recovery Algorithm
Compressed Sensing is a novel approach to bypass the Nyquist sampling limits whenever the signals are sparse, and to compress them simultaneously. In this paper, improving our previous results, we will propose a compressed sensing algorithm based on the high-quality lossless unbalanced vertex expander graphs, with a fast and simple quantum decoding algorithm. Exploiting the unique neighborhood ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.01992 شماره
صفحات -
تاریخ انتشار 2017